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Abstract—This study looks at how brain areas can be 
represented as nodes and their connections as edges in order to 
understand neural pathways in cognitive processes using graph 
theory. Investigated are the theoretical foundations of brain 
network representation, analyzing weighted, directed, and 
undirected graph forms. In order to characterize the 
organization of brain networks, important graph-theoretic 
metrics such as degree centrality, clustering coefficient, and 
small-world features are investigated. Preprocessing, graph 
creation, and network analysis techniques are included in 
implementation approaches utilizing fMRI and DTI 
neuroimaging data. Applications show how to use changes in 
network properties to recognize neurological conditions like 
schizophrenia and Alzheimer's disease.  
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I.  INTRODUCTION  
One of the most complex networks in nature is the human 

brain. Consisting of approximately 86 billion neurons 
connected through trillions of synaptic connections, it is the 
central organ of the nervous system which orchestrates every 
cognitive process that regulates our body. Understanding the 
intricate mechanisms of how these neural pathways enable 
cognitive processes such as learning, feeling and memory 
formation is a central question in neuroscience. A 
conventional approach in neuroscience to study neural 
connectivity has been through relying on biological and 
statistical methods. 

Complex networks can be well represented and analyzed 
using graph theory, an essential area of discrete mathematics.  
Graph theory is a strong technique in neuroscience that may 
be used to measure network features, predict patterns of brain 
connectivity, and detect changes linked to various cognitive 
states and neurological illnesses.  Our understanding of how 
brain networks support cognitive activities and how these 
networks are damaged in various pathological situations has 
been completely transformed by the application of 
graph-theoretic techniques to neuroscience. 

For a while, neuroscience research focused on 
understanding the functions of individual brain regions. But 

it's becoming more and more clear that intricate cognitive 
processes like memory, attention, language, and awareness 
result from the coordinated activity and dynamic interaction of 
various brain regions rather than from the isolated activities of 
individual parts. This realization spurred a fundamental shift 
in perspective: from merely identifying "where" brain activity 
occurs to understanding "how" different brain regions 
communicate and integrate information. Graph theory offered 
the precise language to formalize this inherent network 
structure, allowing researchers to move beyond simple 
activation maps and quantitatively analyze the complex 
relationships, information flow, and organizational principles 
that underpin all aspects of brain function. This capability  
became crucial for unraveling the brain's remarkable 
computational power and its vulnerabilities in disease. 

This paper aims to provide a comprehensive examination 
of how graph theory can be applied to model neural pathways 
in cognitive processes by investigating the theoretical 
foundations that allow brain networks to be represented as 
graphs. 

II. THEORETICAL FRAMEWORKS 
A. Graph 

Graph is a fundamental mathematical structure used to 
model relationships between objects. It is a visual 
representation which consists of vertices or nodes and edges or 
lines (citation). Vertices are individual objects or points while 
edges represent the relationships or connections between the 
vertices. Hence, an edge connects two vertices. A graph G is 
defined as an ordered pair G= (V, E) where V is a set of 
vertices and E is a set of edges. 

Undirected Graph  

 Undirected graph has an edge between two vertices which 
has a symmetrical relationship. If vertice u is connected to 
vertice , then v is also connected to u. Undirected graphs are 
typically used when the connection or relationship between 
two neural elements is believed to be symmetrical. 
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Figure 2.1 Undirected Graph (a) and Directed Graph (b) 

   source : researchgate.net 

Directed Graph 

 In a directed graph (diagraph), the edges have a specific 
direction. Directed graphs are essential for modeling the 
directed flow of information in neural pathways or influences 
between brain regions. Directed graphs are a direct 
representation of synaptic connections. Directed edges give 
understanding on feedback in cognitive processing.  

Weighted Graph 

 In a weighted graph, each edge has an assigned numerical 
value called a weight w: E → ℝ which can represent numerous 
of things. A weighted graph is defined as  𝐺 = (𝑉, 𝐸, 𝑤) where  

● V is a set of vertices (nodes) 
● E is a set of edges  
● w is a weight function 

 

Figure 2.2 Weighted Graph 

   source : stackoverflow.com 

 The brain itself is not merely a collection of binary 
connections. The strength of these connections varies and are 
occasionally crucial for modulating information processing. 
Weighted graphs fit to represent this quantitative aspect. The 
assigned weights to the edges connecting neurons represent 
the strength of the synaptic connections and can be measured 
in different ways. These weights can coincide with the number 
of receptors or the amount of neurotransmitters that are 
released. In DTI-derived structural networks, the weights on 
the edges represent the number of white matter streamlines 
connecting two regions. 

B. Brain as a Network 

The complexity of the human brain naturally allows 
networks-based analysis, where graph theory gives a 
mathematical framework for comprehending brain 

organization and function, to be a natural fit for this complex 
structure. Early neuroanatomical research that demonstrated 
the interconnection of brain areas led to the idea of the brain 
as a network. Ramon y Cajal laid the foundation for 
contemporary network neuroscience with his neuron 
hypothesis in the late 19th century, which postulated that the 
nervous system is made up of distinct cellular units (neurons) 
connected by synapses. Building upon this foundational 
understanding of neurons as discrete, interconnected units, the 
introduction of modern neuroimaging techniques, such as 
functional Magnetic Resonance Imaging (fMRI) and Diffusion 
Tensor Imaging (DTI), enabled researchers to effectively map 
brain connections at a macroscopic scale. This technological 
advancement sparked the realization that higher-order 
cognitive functions do not arise from isolated brain regions but 
rather from the intricate and dynamic interaction among 
distributed neural populations. Therefore, graph theory 
became an essential instrument, offering the challenging 
mathematical language to translate these complex biological 
connections into measurable nodes and edges. This allowed 
for the methodical examination of the topology, efficiency, and 
modularity of brain networks as well as the functions of 
particular areas as network hubs, going beyond simple 
localization to a comprehensive comprehension of brain 
function. 

 

Figure 2.3 Brain Network 

   source : researchgate.net 

C. Graph theory  in Neuroscience 
Several graph-theoretic metrics have proven particularly 

valuable for characterizing brain networks: 

1. Degree Centrality 

 The degree of a node represents the number of connections 
it has with other nodes. In brain networks, nodes with high 
degree centrality (i)  are considered "hubs" that have 𝐶

𝑑
important roles in integrating information and network 
communication.      

    𝐶
𝑑
(𝑖) = 𝑘

𝑖
=

𝑗≠𝑖
∑ 𝑎

𝑖𝑗

2. Clustering Coefficient 

 This indicator reflects local network organization and 
functional specialization within brain areas and predicts the 
tendency of a node's neighbors to be connected to one another. 
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3. Path Length 

 The fewest number of edges needed to connect two nodes 
is represented by their shortest path length L.  The average 
path length throughout the network shows how well 
information is transferred throughout the brain. 

4. Betweenness Centrality 

This measure identifies nodes that frequently appear on 
shortest paths between nodes j and h that pass through i, which 
highlights brain regions that act as critical bridges in network 
communication. 

  𝐶
𝑏
(𝑖) = 2

(𝑁−1)(𝑁−2)
𝑗≠ℎ≠𝑖

∑
𝑛

ℎ𝑗
(𝑖)

𝑛
ℎ𝑗

5. Small-World Properties 

Brain networks typically exhibit small-world 
characteristics, combining high local clustering with short 
global path lengths. This organization enables both specialized 
local processing and efficient global integration. A network 
has small-world properties if it possesses:  

1. High Clustering Coefficient: Similar to a regular 
(lattice-like) network, indicating local specialization 
and efficient processing within modules. 

2. Short Characteristic Path Length: Similar to that of a 
random network, indicating efficient global 
communication and integration of information across 
distant regions. 

Three criterias which are used to determine if a network has 
small-world properties :  

     γ =  𝐶
𝐶

𝑟𝑎𝑛𝑑
λ =  𝐿

𝐿
𝑟𝑎𝑛𝑑

σ =  γ
λ

6. Modularity 

This parameter measures how well a network can be 
separated into distinct communities or modules, reflecting the 
brain's hierarchical structure into functional systems. 

In the brain, modularity reflects the existence of 
functionally specialized processing units (e.g., visual 
processing module, auditory processing module) that operate 
relatively independently but are still able to communicate 
when needed. Dynamic changes in modularity can reflect 
cognitive state changes. 

III. IMPLEMENTATION 

A. Data Acquisition and Preprocessing 

1. Functional Magnetic Resonance Imaging (fMRI) 

fMRI is primarily used to deduce functional connectivity. 
The use of fMRI  started in the mid-1990s which increased the 
discovery of bases in neurological disorders.  fMRI measures 
Blood Oxygen level dependant (BOLD) signal, which is a 
mark of neural activity. BOLD time series are extracted from 

predefined brain regions (nodes) and are acquired using 
echo-planar imaging sequences with  repetition times of 1-3 
seconds. Nodes represent brain regions and edges represent 
relations or connections. In order to form a complex networks 
from fMRI in graph,  preprocessing such as realignment, 
slice timing correction and normalization are needed. 

There are two categories of computational methods for 
brain connectivity. Effective connection and functional 
connectivity. While effective connection focuses on the 
directed influence of brain regions on one another, functional 
connectivity gives information about the statistical 
dependency or temporal correlations between separate 
neurophysiological processes. 

2. MRI 

Diffusion MRI (dMRI) data, which measures the diffusion 
of water molecules in brain tissue, is the main source of 
information used to build structural brain networks. This 
technique leverages the anisotropic diffusion of water, 
meaning its movement is restricted and directed along the 
organized axonal bundles of white matter, thereby providing a 
unique window into the brain's physical pathways. Before 
network construction, the raw dMRI data undergoes crucial 
preprocessing steps, including correction for head motion, 
eddy current distortions, and removal of non-brain tissue, 
ensuring the accuracy and reliability of subsequent fiber 
tracking algorithms that will reconstruct the white matter 
tracts. 

B. Graph Construction Representing Brain Networks 

In order to apply graph theory to neuroscience, it is 
essential to first convert unstructured neuroimaging data into a 
structured graph (G=(V,E)).  In this procedure, the network's 
nodes and edges are defined according to the kind of 
connectivity under examination(structural, functional, or 
effective). 

Node Definition and Brain Parcellation 

 An important first step is to define the nodes of a brain 
network, which is usually accomplished by a procedure known 
as brain parcellation. To  create a single node in the network, 
the constant brain volume or surface should be divided into a 
collection of unique and  non-overlapping sections. 

1. Anatomical Parcellation 

 This common technique sections the brain using 
standardized anatomical atlases.  These atlases, like the 
Harvard-Oxford or Automated Anatomical Labeling (AAL) 
atlases, provide a systematic and repeatable method of 
defining areas of interest (ROIs) by segmenting the brain 
according to macro-anatomical markers (gyri, sulci, and 
subcortical structures).  Then, each anatomically defined ROI 
turns into a node in the graph, making sure that analyses from 
various people and research may be compared. 

2. Functional Parcellation 
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 Nodes can be defined by homogenous regions derived 
from resting-state fMRI data. Methods used for functional 
parcellation include Independent Component Analysis (ICA) 
to identify functionally coherent networks, clustering 
algorithms applied to activation patterns and template-based 
approaches using existing functional atlases. 

Edges Definition and Weighting 

 Functional network construction quantifies statistical 
dependencies, known as functional connectivity (FC), between 
time series of nodes. Usually, the correlation coefficient 
between the time series of node pairs is used to weight the 
edges in these networks.  Pearson's correlation coefficient is 
frequently used for fMRI data, but functional interactions are 
measured for EEG/MEG using techniques like spectral 
coherence, phase synchronization, or lagged phase 
synchronization. In order to remove weak or false 
connections, an unweighted graph can be created by applying 
a threshold to the correlation matrix, where connections that 
exceed this threshold are viewed to be present (edge = 1) and 
others are regarded as absent (edge = 0).  Functional networks 
are typically represented as undirected graphs since correlation 
does not always imply directionality. 

 

Figure 3.1 Brain Network Construction 
source : frontiersin.org 

 Figure 3.1 above is Schematic representation of a typical 
pipeline for functional brain network construction and 
subsequent graph theoretical analysis using fMRI data. Time 
courses are taken from fMRI data and turned into a binary 
correlation matrix and a functional brain network. Then, graph 
analysis is done on the connection network of the brain. 

 The goal of structural network construction is to create the 
"wiring diagram" of the brain by mapping the anatomical 
connections between various brain regions.  The main tool 
used in this procedure is Diffusion Tensor Imaging (DTI), a 
specialized magnetic resonance imaging (MRI) method that 
gauges how water molecules diffuse throughout brain tissue.  
DTI enables researchers to infer the orientation and integrity 
of these brain networks because water diffuses more readily 
along the highly structured axons within white matter fiber 
tracts than across them.  The first step in the construction 
process is tractography, which reconstructs the pathways of 
the main white matter fiber bundles that connect various brain 
regions using a computational algorithm applied to the raw 

DTI data. Once brain regions have been defined as nodes 
through a parcellation scheme , an edge is established between 
two nodes if a significant number of these reconstructed 
streamlines are found to connect them. These structural edges 
are typically weighted to reflect the strength or density of the 
anatomical connection. Since the DTI tractography techniques 
frequently detect the presence of fiber bundles between 
regions without conclusively calculating the typical direction 
of information flow along those collected pathways at the 
macro-scale, the resulting structural brain networks are usually 
represented as undirected graphs. 

 In order to better understand how connectivity patterns in 
the brain change and adapt over time, network neuroscience is 
shifting its attention from static representations to dynamic 
brain networks. With neuronal interactions varying on time 
frames ranging from milliseconds to minutes, this method 
recognizes that brain function is essentially dynamic and can 
reflect fleeting cognitive states, attentional shifts, or 
continuing mental activities.  Separating relatively large 
neuroimaging time series (from fMRI, EEG, or MEG, for 
example) into several shorter, sometimes overlapping time 
periods is usually the first step in building dynamic brain 
networks. Through these defined windows, a functional 
connectivity matrix is computed using methods such as 
Pearson’s correlation coefficient for fMRI data, or spectral 
coherence for EEG/MEG. Instead of a single brain graph, the 
outcome is a series of connectivity matrices that each show the 
network state of the brain at a certain point in time. 

Constructing Conceptual Brain Networks 

 To better show how graph theory can be used to build 
brain networks, the Python networkx tool can be used to make 
a simplified conceptual network. This code describes a 
collection of nodes that are divided into functional groupings 
like motor, cognitive, and sensory regions. In order to simulate 
stronger connections within functional groups (which stand for 
modularity and functional segregation) and sparser but 
essential connections across groups for global integration, it 
then creates edges between these nodes with set weights. To 
illustrate these theoretical linkages, the network is built as an 
undirected graph.  

import networkx as nx 

import matplotlib.pyplot as plt 

 

regions = { 

    'sensory': ["Visual Cortex", "Auditory Cortex", 
"Somatosensory Cortex"], 

'cognitive': ["Prefrontal Cortex", "Parietal Lobe", "Temporal 
Lobe", "Hippocampus", "Amygdala"], 

   'motor': ["Motor Cortex", "Basal Ganglia", "Cerebellum", 
"Thalamus"] } 
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colors = {'sensory': '#9dd69b', 'cognitive': '#87b6de', 'motor': 
'#e85e60'} 

G = nx.Graph() 

for group, nodes in regions.items(): 

G.add_nodes_from(nodes,group=group,color=colors[
group]) 

 

for group in regions.values(): 

    [G.add_edge(u, v, weight=0.8) for i, u in enumerate(group) 
for v in group[i+1:]] 

cross_conn = [ 

    ("Visual Cortex", "Parietal Lobe", 0.9), ("Auditory Cortex", 
"Temporal Lobe", 0.85), 

    ("Somatosensory Cortex", "Parietal Lobe", 0.9), 
("Prefrontal Cortex", "Motor Cortex", 0.7), 

    ("Parietal Lobe", "Motor Cortex", 0.75), ("Amygdala", 
"Thalamus", 0.8), 

    ("Thalamus", "Visual Cortex", 0.6), ("Thalamus", "Auditory 
Cortex", 0.6), 

    ("Thalamus", "Somatosensory Cortex", 0.6), 
("Hippocampus", "Prefrontal Cortex", 0.7), 

    ("Cerebellum", "Parietal Lobe", 0.65) 

] 

[G.add_edge(u, v, weight=w) for u, v, w in cross_conn] 

 

if not nx.is_connected(G): 

    [G.add_edge(list(c)[0], list(c)[0], weight=0.5) for c in 
nx.connected_components(G)] 

plt.figure(figsize=(12, 10)) 

pos = nx.spring_layout(G, k=0.3, seed=42) 

 

nx.draw_networkx_nodes(G, pos, node_color=[d['color'] for 
n,d in G.nodes(data=True)],  

                      node_size=2500, alpha=0.9) 

nx.draw_networkx_labels(G, pos, font_size=10, 
font_weight="bold") 

nx.draw_networkx_edge_labels(G, pos,  

                            edge_labels={(u,v): f"{d['weight']:.2f}" for 
u,v,d in G.edges(data=True)},  

                            font_size=8) 

 

 

plt.axis('off') 

plt.tight_layout() 

plt.show() 

Based on the idea of functional parcellation, each node in 
this network directly reflects a conceptual brain region, 
color-coded to represent its larger functional grouping. The 
connections or communication channels between these brain 
regions are illustrated by the edges connecting these nodes. 
The numerical weights given to these edges—the numbers 
shown on the lines—are also very important since they 
conceptually show the different levels of interaction 
effectiveness and strength, modeling how actual brain 
connections can be stronger or weaker. For example, a more 
strong information transmission line may be indicated by a 
thicker or higher-weighted edge. Each node's degree, or the 
number of direct connections it has (counting the lines that 
connect each colored circle), shows how connected it is to the 
rest of the network. High degree nodes are generally seen as 
more central and can act as local "hubs" for information 
processing inside their functional group or for making 
connections across various groups. 

C. Graph theory analysis implementation 

1. Global Network Measures 

The complete structure and effectiveness of the entire brain 
network are described by global network metrics.  They 
measure the efficiency of information integration and 
communication between various brain areas throughout the 
entire system. 

 

Figure 3.2 Global Network Measures 

source : frontiersin.org 

Segregation measures such as modularity and clustering 
coefficient evaluate the degree of local interconnection among 
nodes, facilitating effective communication inside modules 
characteristic path length assesses integration and reflects the 
effectiveness of information flow globally.  Small-world 
networks provide for both local clustering and short global 
pathways by balancing regular and random structures.  
Furthermore, assortativity assesses the durability of networks; 
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assortative networks are more resistant to hub failures than 
disassortative ones. 

2. Local Network Measures 

Local network measures concentrate on the traits and 
significance of specific nodes or their nearby communities 
within the larger network.  They provide information on the 
distinct functions and contributions of various brain areas. 
These measures allow researchers to identify crucial 
individual brain regions and understand their specific roles in 
information processing. For example, Degree Centrality 
quantifies the number of direct edges (connections) a specific 
node (brain region) possesses. The Clustering Coefficient of a 
node, on the other hand, measures the density of connections 
among its immediate neighbors, indicating the extent to which 
a region is part of a closely integrated local processing cluster 
or "clique". Betweenness Centrality highlights nodes that are 
frequently on the shortest paths between other pairs of nodes, 
signifying their importance as "bridges" or "bottlenecks" for 
information flow across different parts of the brain network. 
Lastly, Eigenvector Centrality assigns a score to a node based 
on the influence of its connections, giving higher values to 
nodes connected to other high-scoring nodes, by then 
identifying highly influential regions that may not have the 
most direct connections but are well-integrated into important 
network pathways. By identifying specific processing 
capacities and crucial integration or vulnerable spots within 
neurological networks, these local measurements collectively 
provide a precise insight of how individual brain regions 
contribute to overall network performance. 

 

Figure 3.3 Local Network Measures 

source : frontiersin.org 

D. Disorder and Mental/emotional States Identification 

Characterizing different mental and emotional states and 
quantitatively identifying neurological and psychiatric 
illnesses are two significant and effective uses of graph theory 
in neuroscience.  This is done by examining the ways in which 
the topological characteristics of brain networks, which are 
accurately described by graph theory metrics, differ from a 
normal basis or display distinctive patterns.  The fundamental 
idea is that abnormal brain activity or distinct cognitive 
experiences are frequently represented by measurable changes 
in the complex network structure of the brain. 

 

Figure 3.4 Brain Network of Neurological and Psychiatric 
Diseases 

Source : medium.com 

Neurological and Psychiatric Disorders 

By measuring the effects of Alzheimer's disease (AD) on 
the network organization of the brain, particularly the 
disruption of nodes (which represent different parts of the 
brain) and their edges (which represent connections between 
them), graph theory becomes a useful framework for 
identifying AD. Long-distance information transfer becomes 
difficult in AD, as shown by the brain's network generally 
exhibiting a decreased global efficiency and an increased 
characteristic path length (measures of ideal paths for 
information flow between nodes via edges).  This frequently 
shows up as a disturbance of the ideal small-world property, 
where the important equilibrium between global integration 
and local specialized processing—represented by the 
clustering coefficient between each node's 
neighbors—becomes compromised. Moreover, highly linked 
"hub" nodes—which are measured by their degree or 
betweenness centrality—are more vulnerable as their edges 
degrade or vanish, significantly impairing network 
communication as a whole.  A breakdown or change in the 
structure of functional brain communities may also be 
indicated by changes in modularity, or the way nodes create 
communities through their edges. Researchers can find unique 
network fingerprints linked to AD by carefully measuring 
these particular graph theoretical metrics that describe the 
arrangement of nodes and edges. 

Graph theory provides an essential tool for comprehending 
schizophrenia by measuring the disorder’s influence on 
functional brain networks. When graph analysis is applied to 
fMRI data, it consistently shows that schizophrenia disrupts 
the healthy brain's ideal small-world features. In particular, it 
shows decreased global efficiency, which suggests that 
long-distance communication between brain nodes is 
restricted. There are noticeable changes in the distribution of 
edges, such as less short-range and more long-range functional 
connections, while the local clustering coefficient, which 
describes regional network patterns, is mostly maintained. 
Additionally, shifts in nodal metrics such as betweenness 
centrality indicate a change in the function of certain nodes in 
regulating the flow of information. The complex network 
dysfunction that underlies schizophrenia can be objectively 
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detected by graph theory by identifying these particular graph 
theoretical abnormalities in nodes and edges. 

Identifying Cognitive Processes and Mental States 

Graph theory reveals how brain networks dynamically 
reconfigure to serve higher-order tasks, making it a helpful 
tool for studying a variety of cognitive processes and mental 
states outside of pathological settings.  In contrast to 
diminished integration and higher modularity in unconscious 
states, graph analysis of consciousness reveals excellent global 
integration (efficiency) during waking.  Through quantifiable 
shifts in edge weights (connectivity strength) and the 
rearranging of modules or hub node functions, which reflect 
ideal information flow, graph theory captures brain plasticity 
for learning and skill acquisition.  Similar to this, dynamic 
network reconfigurations involving temporary shifts in 
modularity and adaptive changes in the centrality of critical 
nodes are a sign of a variety of mental states, such as high 
cognitive load or attention, demonstrating the brain's 
adaptability in resource allocation. 

IV. CONCLUSION 
The immense complexity of the human brain continues to 

be a primary area of scientific research. This study 
demonstrates how graph theory, an essential element of 
discrete mathematics, may be used to effectively describe and 
comprehend the complex network of connections found in the 
brain. Graph theory offers an organized method of analyzing 
brain organization by illustrating brain regions as nodes and 
their anatomic alongside all functional links as edges, derived 
from methods such as MRI, DTI, and fMRI data. This 
powerful framework allows for the quantification of key 
network features through global measures like efficiency and 
local measures such as centrality, analyses of properties like 
small-worldness and modularity.  

Importantly, these graph-theoretic approaches have 
significantly improved our comprehension of neurological 
disease as well as normal brain function.  The distinctive 
small-world architecture of the brain supports a variety of 
cognitive functions, including learning, memory formation, 
and consciousness, by striking a balance between specialized 
local processing and effective global integration.  
Furthermore, neurological disorders have been directly 
connected to measurable changes in certain network qualities, 
such as altered efficiency, disturbed hub structure, or modified 
modularity. Graph theoretical analysis will continue to provide 
a deeper understanding of the structure, function, and 
dysfunction of the brain through the potent lens of discrete 
mathematics. 
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